首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9742篇
  免费   714篇
  国内免费   2547篇
化学   11715篇
晶体学   93篇
力学   233篇
综合类   120篇
数学   97篇
物理学   745篇
  2024年   10篇
  2023年   140篇
  2022年   255篇
  2021年   668篇
  2020年   682篇
  2019年   554篇
  2018年   504篇
  2017年   478篇
  2016年   623篇
  2015年   552篇
  2014年   512篇
  2013年   1001篇
  2012年   795篇
  2011年   622篇
  2010年   437篇
  2009年   594篇
  2008年   572篇
  2007年   556篇
  2006年   469篇
  2005年   399篇
  2004年   352篇
  2003年   299篇
  2002年   259篇
  2001年   184篇
  2000年   200篇
  1999年   173篇
  1998年   160篇
  1997年   125篇
  1996年   115篇
  1995年   120篇
  1994年   107篇
  1993年   84篇
  1992年   64篇
  1991年   64篇
  1990年   38篇
  1989年   61篇
  1988年   40篇
  1987年   14篇
  1986年   16篇
  1985年   14篇
  1984年   17篇
  1983年   10篇
  1982年   17篇
  1981年   5篇
  1980年   8篇
  1979年   8篇
  1978年   5篇
  1976年   6篇
  1975年   4篇
  1973年   3篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
91.
Synthesis of a series of novel sulfone derivatives 6(a-u) possessing benzimidazoles and isoxazoline rings tailored in a single molecule 5(a-u) was done by reactions using 5-(bromomethyl)-3-phenyl-4,5-dihydroisoxazoles 3(a-u) and 5-{[(1H-benzo[d]imidazol-2-yl)thio]methyl}-3-phenyl-4,5-dihydroisoxazoles 4(a-u) molecules. The chemical structures of all the newly synthesized compounds were established by IR, 1HNMR, 13CNMR and LCMS spectral data. The biological characteristics of the novel sulfone compounds, such as their antioxidant and antibacterial activity, were evaluated. Among the synthesized sulfones derivatives, compounds 6 g, 6b, and 6e demonstrated outstanding antibacterial activity while compounds 6b, 6c, 6i, 6j, and 6 k demonstrated higher antioxidant activity. Further insilico absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies of synthesized sulfones were studied which exhibited excellent intestinal absorption which is more than 80 %, and relatively moderate toxicity. Molecular docking studies confirmed the antibacterial and antioxidant potential which is comparable with the standard.  相似文献   
92.
Nanotechnology is an emerging field of science that has significant applications in applied sciences. In this study, silver nanoparticles (SNPs) were synthesized utilizing the leaf filtrate of Rubus ellipticus. SNPs were characterized using UV–visible spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction patterns to determine their morphology and chemical composition. The surface plasmon resonance of SNPs revealed a peak at 415 nm. The synthesized SNPs were mainly spherical crystals with an average size of 21.43 nm. When compared to plant extract and positive controls (AgNO3 and penicillin), SNPs demonstrated significant bactericidal activity against all the tested bacteria (gram-positive and gram-negative). The most effective bactericidal activity was found against Pseudomonas aeruginosa, with a minimum inhibitory concentration of 1.25 µg/mL. In addition, a dose-dependent antioxidant activity of SNPs was found against the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical with an average IC50 value of 72.84 µg/mL. The photocatalytic activity of Methylene blue (MB) dye decomposition under sunlight was studied. The results showed that MB degraded by 98 % after 150 min in the sun. Overall, the findings of this study indicate that R. ellipticus biosynthesized SNPs may have bactericidal and photocatalytic effects.  相似文献   
93.
In the present study, paclitaxel (PTX), multi-walled carbon nanotubes (MWCNTs), and doxorubicin (DOX) have been simultaneously doped into the poly(ϵ-caprolactone) (PCL)/chitosan/zein core-shell nanofibers to increase its cytotoxicity for MCF-7 breast cancers killing. The physico-chemical properties of synthesized nanofibers were determined by scanning electron microscope, Fourier-transform infrared spectroscopy, tensile strength, and degradation rate determinations. The in vitro release studies demonstrated the sustained release of drugs from core-shell nanofibrous scaffold. The cytotoxicity and compatibility of core-shell nanofibers were investigated by their treating with MCF-7 breast cancer cells and L929 normal cells, respectively. PCL/PTX/chitosan/zein/MWCNTs/DOX core-shell nanofibers containing 1 wt% MWCNTs, 100 μg ml−1 DOX and 100 μg ml−1 PTX had a high biocompatibility with a 84% MCF-7 cancer cells killing. The in vivo studies revealed the synergic effects of MWCNTs and anticancer drugs on the tumor inhibition. This method could be considered as a new way for developing of MWCNTs loaded-nanofibers for cancer treatment in future.  相似文献   
94.
《印度化学会志》2023,100(1):100860
This study investigates the influence of synthesis processes such as sonication, sol-gel, and microwave on the production of highly crystalline Lanthanum oxide nanoparticles (La2O3) employing Lanthanum nitrate and Ammonium hydroxide (NH4OH) as precursors. X-ray diffraction (XRD), particle size analysis (DLS), Field emission scanning electron microscopy (FESEM), Fourier-transform infrared spectroscopy (FTIR), ultraviolet–visible absorption spectroscopy (UV–Vis), and electrochemical impedance spectroscopy (EIS) were used to examine the most effective processing method and its effects on the nanoparticle characteristics, such as structure, morphology, and optical and electrical behavior. Sonication produces La2O3 NPs with a smaller crystalline size, an agglomerated nanorod structure, a higher bandgap, and better electrical responsiveness than sol-gel and microwave techniques. Structural and optical characterization tests discovered this. The photocatalytic degradation activity of cationic Safranin and anionic Congo red dye exhibits degradation efficiency of around 90.13% and 89.66%, respectively.  相似文献   
95.
Biosynthesis of metallic silver nanoparticles (AgNPs) has gained much interest and offers an attractive alternate to physical and chemical approaches. In recent year several safe, easy, cost-effective, reproducible, and environmentally friendly synthesis approaches for silver nanoparticles have been developed. In this research work, a simple, cheap, and unexplored method was applied on green synthesis of AgNPs using secondary metabolites extracted from Bixa orellana seeds. The seeds are rich of flavonoids and phenolic compounds which presumably responsible for the fast reduction and stabilization of silver ion into silver nanoparticles. The biosynthesis process is very likely to be able to reduce silver ions under simple physiological conditions. The surface plasmon resonance (SPR) that was appeared at 420 nm in UV–vis spectrum, had confirmed the formation of AgNPs. Moreover, the functional groups in secondary metabolite that act as reducing, capping and stabilizing agents for silver nanoparticles, are identified by Fourier transform infrared (FTIR) spectra. An X-ray diffraction analysis generated four peaks for Bixa orellana seed extract mediated AgNPs positioned at 2θ angles of 38.1°, 44.2°, 64.6°, and 77.5° corresponding to crystal planes (1 1 1), (2 0 0), (2 2 0), and (3 1 1). Field emission scanning electron microscope (FESEM) and transmission electron microscopy (TEM) images confirmed the formation of nanosized silver particles. The z-average of the synthesized particles measured by dynamic light scattering (DLS) was found to be 92.9 nm. AgNPs synthesized exhibited remarkable antioxidant activity, antibacterial and antiproliferative activity against human breast (MCF-7) cell line. On the basis of our results, we conclude that biologically synthesized AgNPs exhibited favorable characteristics and have the potential to be used in biomedical fields.  相似文献   
96.
A general synthetic entryway into novel cationic Pd(II) indenyl complexes bearing one alkyl/aryl phosphine and one N-heterocyclic carbene is reported. All metal complexes have been exhaustively characterized by spectroscopic and structural analyses, highlighting that the indenyl fragment has an hapticity intermediate between η3 and η5. Most of the target complexes are stable in solid state and in solution for a long time. Two different applications of these organopalladium compounds are proposed. Firstly, they have been tested as antiproliferative agents towards three different ovarian cancer cell lines, showing a cytotoxicity significantly higher than that of cisplatin, with a clear dependence on the nature of the coordinated phosphine. Moreover, the similar cytotoxicity towards cisplatin-sensitive and cisplatin-resistant cell lines suggests that these new palladium derivatives act with a different mechanism of action with respect to classical platinum-based drugs. Finally, the water-soluble palladium complexes bearing 1,3,5-triaza-7-phosphaadamantane (PTA) have demonstrated interesting catalytic performances in Suzuki–Miyaura coupling in aqueous media, being, inter alia, readily and efficiently recyclable.  相似文献   
97.
In recent decades, nanotechnology has been empowered as a new and developing interdisciplinary region of science and innovation that coordinates material science and biology. Nanoscience and nanotechnology open up new streets of examination that are helpful in synthesizing novel nanomaterials with remarkable applications. Among different metal nanomaterials, silver nanoparticles (AgNPs) attracted the attention of researchers due to their versatile antibacterial characteristics and biological properties. Biogenically synthesizing AgNPs from plants and microorganisms seems to be a highly promising alternative for developing a technology that is both environmentally benign and fast. Plants and microorganisms' ability to synthesize AgNPs has mostly remained untapped, and the lack of investigation is due to the vast variety of plants and microorganisms. This review aims to describe the current progress in various synthetic techniques for AgNPs and their potential for antibacterial applications. It discusses biogenic synthetic approaches, the role of various metabolites in the growth processes of AgNPs with antibacterial implications, bactericidal mechanisms, and the influence of operational parameters on AgNPs synthesis. Furthermore, the present status, critical challenges, and future outlook of AgNPs will be explored, which will definitely affect their present and future scenarios. We believe that by focusing readers' attention on nature-inspired, biogenically synthesized AgNPs and their bactericidal applications, this review will enable them to formulate a new perspective.  相似文献   
98.
以F127为模板剂,Ni Cl2为镍源,尿素为氮源,间苯二酚甲醛原位聚合树脂为碳源,分别采用均相法和两相法制备Ni-NOMC-1,Ni-N-OMC-2纳米复合材料。X射线衍射(XRD)、激光拉曼以及透射电子显微镜(TEM)等测试结果表明,复合材料具有有序介孔结构,Ni以金属微粒形式嵌于碳骨架中,提高了有序介孔碳的石墨化程度。X射线光电子能谱测试(XPS)表明尿素热解后以4种形式存在:sp3杂化与C结合的N原子,吡啶N原子,sp2杂化与C结合的N原子以及quaternary-N原子。Ni-N的共改性改变了碳载体的理化性质,有利于Pt纳米粒子的负载与分散。均相法制备的Ni-N-OMC-1复合材料微波负载Pt后,氧还原极限电流密度为5.32 m A·cm-2,氢氧化电化学活性面积高达138.53 m2·g-1,电化学催化活性优于商业20%Pt/C材料(4.49 m A·cm-2,96.98 m2·g-1)。  相似文献   
99.
邻香草醛缩2-氨基4-硝基苯酚(H2L)分别与二丁基氧化锡、二苄基二氯化锡反应, 合成了二丁基锡Schiff碱配合物(1)和单苄基Schiff碱配合物(2)。配合物经元素分析、1H NMR、13C NMR、IR、UV-Vis表征, 并用X-射线单晶衍射测定了分子结构。研究了配体H2L及配合物1、2对癌细胞Hela、MCF7、HepG2、Colo205、NCI-H460的抑制活性, 结果表明配合物1对这5种癌细胞的抑制效果优于现有抗癌药物卡铂, 可作为抗癌药物的候选化合物。在Tris缓冲溶液中, 以EB做为荧光探针, 用荧光光谱法研究了配体H2L及配合物2与鲱鱼精DNA的相互作用, 结果表明配合物与DNA作用主要是由于Schiff碱配体协同效应所致。  相似文献   
100.
在乙醇-苯溶剂中,对碘苯甲酸分别与三苯基氢氧化锡、二丁基氧化锡反应,合成了2个有机锡对碘苯甲酸酯,Ph3Sn(p-IC6H4O2)(1)和{[n-Bu2Sn(p-I-C6H4O2)]2O}2(2)。经IR、1H NMR、元素分析和X射线单晶衍射对配合物进行了表征。配合物1属三斜晶系,空间群为P1,中心锡原子与苯基碳原子、羧基氧原子构成畸型四面体,并且分子间通过氢键和C-I…π共同作用形成二聚体结构;配合物2属单斜晶系,空间群为C2/c,配合物是以Sn2O2构成的平面四元环为中心的二聚体结构,并且分子间通过I…I共同作用形成了一维链状结构。热重分析表明,配合物1和2在230℃以下具有良好的热稳定性。配合物1、2对杂草刺苋(Amaranthus spinosus)、马齿苋(Portulaca oleracea)的抑制活性大于对农作物绿豆的影响,且配合物1的抑制活性高于配合物2的抑制活性,为刺苋、马齿苋除草剂研究提供了一种方法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号